A/D-wander
Prinain

Foli
a) Wentisteretsisinung

Quantirierengpfelhbe "Muid ab Raunhen modilleist \rightarrow Quantininunganaunten.
aithich hinear amstergendes Lignal

$-\frac{1}{2} u_{\text {LSB }}$

$$
=\sqrt{\frac{1}{T} \int_{-\frac{T}{2}}^{T / 2}\left(-u_{c s B} \cdot \frac{t}{T}\right)^{2} d t}=\sqrt{\frac{\left.u_{L s B}^{2} \cdot t^{3}\right|_{-\frac{T}{2}} ^{\frac{T}{2}}}{T^{3}}}=\frac{u_{\omega B}}{\sqrt{12}}
$$

danam: Signal-zu-Raushabstand bri vollaunstevenung mit Sagezatun

$$
\begin{aligned}
S N R & =20 \log \left(\frac{u_{e}}{u_{q}}\right) \\
& =20 \log \left(\frac{u_{n t} / \sqrt{12}}{u_{U S} / \sqrt{12}}\right)=20 \log \left(\frac{u_{n f}}{u_{\text {LSR }}}\right)=20 \log \left(2^{N}\right) \\
S N R & =20 \cdot N \cdot \log 2=n \cdot 6,02 d D
\end{aligned}
$$

\rightarrow Eilohing der Anfbisig um 1 bit evlolt den SNR um 6 dB.

- fir Simmignal: $S N R=n \cdot 6,02 d B+1,76 d B$ (bígléillen Qrantivinysfeblevembenf)
b) zéshikeretinivung

Ideale Kennlinie eines 3BitWandlers

Offsetfehler

Kenngrópen
Auflizung is Bit Tandemate in $5 / \mathrm{s}$

Statinhe Feller
$\left.\begin{array}{l}\text { - Ofpetpiler } \rightarrow \text { Tolid } \\ \text { - Vensarkungplebe } \rightarrow \text { Eohí }\end{array}\right\}$ hneane Teher

- vichslinumíar \rightarrow Tohé
bob dilferentille NL fitiot bei DAC zu powtomiftem bei ADCs in fele
dynaminhe Fellen
Nembiblong der Abtastaitpumbte (Jister) \rightarrow Apestarfellew
 Simo- Ligul: -gröpta Felle enbtelt in Nullelurifgeng (groiptor Antaig)

$$
\left.\frac{d U}{d t}\right|_{\max }=\vec{a} \cdot v
$$

Teller: $\Delta u=\hat{U}_{\omega_{\text {max }}} \Delta t_{A}$

$$
\rightarrow \Delta t_{A}<250 \mathrm{ps}
$$

Verstärkungsfehler

Integrale Nichtlinearität

Differentielle Nichtlinearität

Reabivincingen
Primisuiler Anflam

S\&H thilvéze bereís min ADC entlalten
Nandbotypen

a) Flash-Wandler Fohé

Komplement zum Ranalbe - DAC

- 2^{N} Kompanateren nótig
- Eissatz bei neidinger Aufbingen $N \leq 8$ BIt
- Sehr lahe Nondlevatan bis un einigen GS/s Tolvé MAX 104
b-) Sukcencie Appioxination Nandler
Tohé
Komparatorvamanse: - N Takte zur wandleng in N Bit noitg
- stett Kompanator auch ADC mí
- Teli MAX 146
c) Pipeline - Nandbr

Prinaíp
Tolié

- ADC gett n Bitans
- DAC wandelt dé n Dí zurick
- Differmbiblung
- Vestaikang der Differenz mít 2^{n}
- Patenaesgabe enfolgA un jéden Tala
- Latussés (Zeiszaikin Anlogen Ue und Angabe Daten) $=$ T. Stufemanable
- DAC, Differensbiblag ud Verstinkng bnanchen wlle Genainghist
- ADC branclt michs wolle Genaing heis ber Avzgabe won $n+x$ Bit (diǵsale Tehlukewektur)

Parallelwandler

$\pm 5 \mathrm{~V}, 1$ Gsps, 8-Bit ADC with On-Chip 2.2GHz Track/Hold Amplifier

Figure 1. Simplified Functional Diagram

Detailed Description

The MAX104 is an 8-bit, 1Gsps flash analog-to-digital converter (ADC) with on-chip track/hold (T/H) amplifier and differential PECL-compatible outputs. The ADC (Figure 1) employs a fully differential 8 -bit quantizer and a unique encoding scheme to limit metastable states to typically one error per 10^{16} clock cycles, with no error exceeding 1LSB max.
An integrated 8:16 output demultiplexer simplifies interfacing to the part by reducing the output data rate to one-half the sampling clock rate. This demultiplexer has internal reset capability that allows multiple

MAX104s to be time-interleaved to achieve higher effective sampling rates.
When clocked at 1Gsps, the MAX104 provides a typical effective number of bits (ENOB) of >7.5 bits at an analog input frequency of 500 MHz . The analog input of the MAX104 is designed for differential or single-ended use with a $\pm 250 \mathrm{mV}$ full-scale input range. In addition, this ADC features an on-chip +2.5 V precision bandgap reference. If desired, an external reference can also be used.

Wandler mit sukzessiver Approximation

＋2．7 V，Low－Power，8－Channel， Serial 12－Bit ADCs

Detailed Description

The MAX146／MAX147 analog－to－digital converters （ADCs）use a successive－approximation conversion technique and input track／hold（T／H）circuitry to convert an analog signal to a 12－bit digital output．A flexible ser－ ial interface provides easy interface to microprocessors （ $\mu \mathrm{Ps}$ ）．Figure 3 is a block diagram of the MAX146／ MAX147．

Pseudo－Differential Input

 The sampling architecture of the ADC＇s analog com－ parator is illustrated in the equivalent input circuit （Figure 4）．In single－ended mode，IN＋is internally switched to $\mathrm{CH} 0-\mathrm{CH} 7$ ，and IN －is switched to COM．In differential mode， $\mathrm{IN}+$ and IN －are selected from the fol－ lowing pairs： $\mathrm{CH} / / \mathrm{CH} 1, \mathrm{CH} 2 / \mathrm{CH} 3, \mathrm{CH} 4 / \mathrm{CH} 5$ ，and $\mathrm{CH} 6 / \mathrm{CH} 7$ ．Configure the channels with Tables 2 and 3.In differential mode， IN －and $\mathrm{IN}+$ are internally switched to either of the analog inputs．This configuration is pseudo－differential to the effect that only the signal at $\mathrm{IN}+$ is sampled．The return side（ $\mathrm{IN}-$ ）must remain sta－ ble within $\pm 0.5 \mathrm{LSB}(\pm 0.1 \mathrm{LSB}$ for best results）with respect to AGND during a conversion．To accomplish this，connect a $0.1 \mu \mathrm{~F}$ capacitor from IN －（the selected analog input）to AGND．
During the acquisition interval，the channel selected as the positive input（ $\mathrm{I}++$ ）charges capacitor CHOLD．The acquisition interval spans three SCLK cycles and ends

Figure 3．Block Diagram
on the falling SCLK edge after the last bit of the input control word has been entered．At the end of the acqui－ sition interval，the T／H switch opens，retaining charge on Chold as a sample of the signal at $\mathrm{IN}+$ ．
The conversion interval begins with the input multiplex－ er switching CHOLD from the positive input（ $\mathrm{I}++$ ）to the negative input（IN－）．In single－ended mode， IN －is sim－ ply COM．This unbalances node ZERO at the compara－ tor＇s input．The capacitive DAC adjusts during the remainder of the conversion cycle to restore node ZERO to $O \mathrm{~V}$ within the limits of 12 －bit resolution．This action is equivalent to transferring a $16 \mathrm{pF} \times\left[\left(\mathrm{V}_{\mathrm{IN}_{+}}\right)\right.$－ （ V_{IN}－）］charge from CHOLD to the binary－weighted capacitive DAC，which in turn forms a digital represen－ tation of the analog input signal．

Track／Hold
The T／H enters its tracking mode on the falling clock edge after the fifth bit of the 8 －bit control word has been shifted in．It enters its hold mode on the falling clock edge after the eighth bit of the control word has been shifted in．If the converter is set up for single－ended inputs，$I N$－is connected to COM，and the converter samples the＂+ ＂input．If the converter is set up for dif－ ferential inputs，$I N$－connects to the＂－＂input，and the difference of $|\mathrm{IN}+-\operatorname{IN}-|$ is sampled．At the end of the conversion，the positive input connects back to $\mathrm{IN}+$ ， and CHOLD charges to the input signal．

Figure 4．Equivalent Input Circuit

Pipeline AD-Wandler

+5V Single-Supply, 1 Msps, 16-Bit Self-Calibrating ADC

Detailed Description

Converter Operation

The MAX1200 is a 16 -bit, monolithic analog-to-digital converter (ADC) capable of conversion rates up to 1 Msps . It uses a multistage, fully differential, pipelined architecture with digital error correction and self-calibration to provide typically 91 dB spurious-free dynamic range at a 1 Msps sampling rate. It also provides excellent SNR and THD performance up to the Nyquist frequency. This makes the device suitable for applications such as data acquisition, high-resolution imaging, scanners, digital communication, and instrumentation.
Figure 1 shows the simplified, internal structure of the ADC. A switched-capacitor, pipelined architecture is used to digitize the signal at a high throughput rate. The first four stages of the pipeline use a low-resolution quantizer to approximate the input signal. The multiplying digital-to-analog converter (MDAC) stage is used to subtract the quantized analog signal from the input. The residue is then amplified with a fixed gain and passed on to the next stage. The accuracy of the converter is improved by a digital calibration algorithm which corrects for mismatches between the capacitors in the switched-capacitor MDAC. Note that the pipeline
introduces latency of four sampling periods between the input being sampled and the output appearing at D15-D0.

While the device can handle both single-ended or differential inputs (see the Requirements for Reference and Analog Signal Inputs section), the latter mode of operation will guarantee best THD and SFDR performance. The differential input provides the following advantages compared to a single-ended operation:

- Twice as much signal input span
- Common-mode noise immunity
- Virtual elimination of the even-order harmonics
- Less stringent requirements on the input signal processing amplifiers

Requirements for Reference and Analog Signal Inputs

 Fully differential switched-capacitor circuits (SC) are used for both the reference and analog inputs (Figure 2). This allows either single-ended or differential signals to be used in the reference and/or analog signal paths. The signal voltage on these pins (INP, INN, RFP, RFN) should never exceed the analog supply rail, $\overrightarrow{A V} D D$ nor fall below ground.

Figure 1. Internal Functional Diagram

+5V Single-Supply, 1 Msps, 16-Bit Self-Calibrating ADC

Figure 2. Simplified MDAC Architecture

Choice of Reference

It is important to choose a low-noise reference such as the MAX6341, which can provide both excellent load regulation and low temperature drift. The equivalent input circuit for the reference pins is shown in Figure 3. Note that the reference pins drive approximately $1 \mathrm{k} \Omega$ of resistance on-chip. They also drive a switched capacitor of 21 pF . To meet the dynamic performance, the reference voltage is required to settle to 0.0015% within one clock cycle. Carefully choose an appropriate driving circuit (Figure 4). The capacitors at the reference pins (RFPF, RFNF) provide the dynamic charge required during each clock cycle, while the op amps ensure accuracy of the reference signals. These capacitors must have low dielectric-absorption characteristics, such as polystyrene or teflon capacitors.
The reference pins can be connected to either singleended or differential voltages within the specified maximum levels. Typically the positive reference pin (RFPF) would be driven to +4.096 V , and the negative reference pin (RFNF) connected to analog ground for best SNR performance. If THD performance is more important to the application than signal-to-noise ratio, choose a lower level, differential voltage such as VRFPS $=$ +3.5 V and VRFNS $=+1.5 \mathrm{~V}$.
There are sense pins, RFPS and RFNS, which can be used with external amplifiers to compensate for any resistive drop on these lines, internal or external to the chip. Ensure a correct reference voltage by using proper Kelvin connections at the sense pins.

Common-Mode Voltage

The switched-capacitor input circuit at the analog input allows signals between AGND and the analog power supply. Since the common-mode voltage has a strong

Figure 3. Equivalent Input at the Reference Pins. The sense pins should not draw any DC current.

Figure 4. Drive Circuit for Reference Pins and Common-Mode Pin
influence on the performance of the ADC, the best results are obtained by choosing $\mathrm{V}_{\mathrm{CM}}=\left(\mathrm{V}_{\text {RFPS }}+\right.$ VRFNS) / 2. This can be achieved by using a resistive divider between the two reference potentials. Figure 4 shows a typical driving circuit for good dynamic performance.
d) L'gma - Dela - Randb

Tolí, Shattong
Analype de Ignale:
Integmator:

$$
\begin{aligned}
& f(k)=f(k-1)+a(k) \cdot T \\
& y^{\prime}(k)=\operatorname{sign}(f(k))= \begin{cases}-1 & b(k)<0 \\
1 & b(k)>0\end{cases}
\end{aligned}
$$

Totaiglied:

$$
\begin{aligned}
& y(k)=y^{\prime}(k-1) \\
& c(k)=y(k) \cdot x_{\text {al }}
\end{aligned}
$$

D/A-Nander:
Summationtinten:

$$
a(k)=x(k)-y(k) \cdot x_{m f}
$$

$$
\begin{aligned}
& \begin{aligned}
\leadsto b(k) & =b(k-1)+T \cdot(x(k)-\operatorname{sign}(b(k-1))) \quad \text { Enstand gheiching } \\
y(k) & =\operatorname{mon}(b(k-1))
\end{aligned} \\
& y(k)=\operatorname{sign}(k(k-1)) \\
& \text { Angerbefuition }
\end{aligned}
$$

Firpumek:

$$
\begin{aligned}
& b(k)-b(k-1)=0 \rightarrow x(k)-\operatorname{mign}(b(k-1))=0 \\
&=\quad{ }_{k} \\
& x_{n}=-1 \quad x_{2}=1
\end{aligned}
$$

in intervalle $\{-1,1\}$ treten existieven unendlich viele vístebili zustinde

- lineame Analye als zidibifretss System

Korespondenstebelle: Antegrator, $O(2)=\frac{1}{1-z^{-1}}$
Iopaliele hegungsfankion.

$$
\begin{gathered}
Q=0, y(x) \\
A=-\frac{y}{2}+x \\
y=A\left(1-z^{-1}\right) \\
y\left(1-z^{-1}+2^{-1}\right)=x \\
y=x
\end{gathered}
$$

Sterribernagungsfumbtion

$$
\begin{gathered}
X=0 \\
A=-\frac{y}{2} \\
Y=Q+\frac{A}{1-2^{-1}} \\
Y=Q\left(1-z^{-1}\right)
\end{gathered}
$$

Sigma-Delta-Wandler 1. Ordnung

Snethtron

- Zúl: Minimérny des stozentils in y
\rightarrow Filserng. infache vamante: Mistelwesbiblogg ither N Tabse, hiefor sinc (x) in Frequensbere's' \rightarrow Tohi unter
- Architettarervéterunge:
- mehrwertige Kompana tomen
- nehrene Integratoren i- Maduletoren lioherer Ondrung
- anfurendgerre Rebodémalgarishmer
- Nortél: - seln enifale Anchiteltar
- emíarbe Dehodérng ïber mittelvertbibung moghinis
- bé kosstanter Eingengrigmal ist di Anflinung riber die Sequenclange, eimsteller"
- Nocbie: - Lole liberabta tung notwendigg (bii enter andmug $2^{\text {N Talte fir N Bit) }}$
\rightarrow médróge vianderingsnaten, hohe Anflizungen

FEATURES

Programmable Filtering:
Any Characteristic up to 108 Tap FIR and/or IIR Polynomial Signal Conditioning up to $8^{\text {th }}$ Order Programmable Decimation and Output Word Rate Flexible Programming Modes:
Boot from DSP or External EPROM
Parallel/Serial Interface
Internal Default Filter for Evaluation
14.4 MHz Max Master Clock Frequency
0 V to +4 V (Single-Ended) or $\pm 2 \mathrm{~V}$ (Differential) Input Range
Power Supplies: AV ${ }_{D D}$, DV $_{\text {DD }}: 5 \mathrm{~V} \pm 5 \%$
On-Chip 2.5 V Voltage Reference
44-Lead MOFP Package
TYPICAL APPLICATIONS
Radar
Sonar
Auxiliary Car Functions
Medical Communications

GENERAL DESCRIPTION

The AD7725 is a complete 16 -bit, $\Sigma-\Delta$ analog-to-digital converter with on-chip, user-programmable signal conditioning. The output of the modulator is processed by three cascaded finite impulse response (FIR) filters, followed by a fully user-programmable postprocessor. The postprocessor provides processing power of up to 130 million accumulates (MAC) per second. The user has complete control over the filter response, the filter coefficients, and the decimation ratio.
The postprocessor permits the signal conditioning characteristics to be programmed through a parallel or serial interface. It is programmed by loading a user-defined filter in the form of a configuration file. This filter can be loaded from a DSP or an external serial EPROM. It is generated using a digital filter design package called Filter Wizard, which is available from the AD7725 section on the Analog Devices website.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

Filter Wizard allows the user to design different filter types and generates the appropriate configuration file to be downloaded to the postprocessor. The AD7725 also has an internal default filter for evaluation purposes.

It provides 16 -bit performance for input bandwidths up to 350 kHz with an output word rate of 900 kHz maximum. The input sample rate is set either by the crystal oscillator or an external clock.
This part has an accurate on-chip 2.5 V reference for the modulator. A reference input/output function allows either the internal reference or an external system reference to be used as the reference source for the modulator.
The device is available in a 44 -lead MQFP package and is specified over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

[^0]e) Dual-Hpa-Nandler

Prinain

$$
\begin{aligned}
& u\left(t_{2}\right)=u_{e} \cdot c_{i} \cdot t_{2} \\
& t_{2}=t_{1}=\frac{u\left(t_{1}\right)}{u_{\text {af }} \cdot c_{i}}=\frac{u_{e} \cdot t_{1}}{u_{\text {at }}}
\end{aligned}
$$

Realínérung
\rightarrow Tolí
(1) Anfintegriéaren der Eingengmanuung inber the feste Zeit $t_{1}, C_{2} \sim U_{e}$
(2) Abuitegreven mit $U_{\mathrm{mp}} \rightarrow C_{2}=$ hompt.
, Messender zitt $t_{2}-t_{1} \sim u_{e}$

- dunch integratón während t_{1} wimbt de sandbe Mitteluetbielen, ken SIH an Enigeng notog
- Eirstellang der mntegrationsit t_{1} \rightarrow Stëruntendruikung, 2. B. Untendricikey war Nekbrummen maphich

Ginsok: Meptechik

Dual-Slope Wandler

General Description

The MAX132 is a CMOS, 18 -bit plus sign, serial-output, analog-to-digital converter (ADC). Multi-slope integration provides high-resolution conversions in less time than standard integrating ADCs, allowing operation up to 100 conversions per second. Low conversion noise provides guaranteed operation with $\pm 512 \mathrm{mV}$ full-scale input range ($2 \mu \mathrm{~V} / \mathrm{LSB}$). A simple 4 -wire serial interface connects easily to all common microprocessors, and twos-complement output coding simplifies bipolar measurements. Typical supply current is only $60 \mu \mathrm{~A}$ and is reduced to $1 \mu \mathrm{~A}$ in sleep mode. Four serially programmed digital outputs can be used to control an external multiplexer or programmable-gain amplifier. The MAX132 comes in 24-pin narrow DIP and wide SO packages, and is available in commercial and extended temperature grades.
High resolution, compact size, and low power make this device ideal for data loggers, weigh scales, data-acquisition systems, and panel meters.

Applications

Remote Data Acquisition
Battery-Powered Instruments
Industrial Process Control
Transducer-Signal Measurement
Pressure, Flow, Temperature, Voltage
Current, Resistance, Weight
Functional Diagram

Features

- Low Supply Current: $60 \mu \mathrm{~A}$ (Normal Operation) $1 \mu \mathrm{~A}$ (Sleep-Mode Operation)
- $\pm 0.006 \%$ FSR Accuracy at 16 Conv/sec
- Low Noise: $15 \mu V_{\text {RMS }}$
- Serial I/O Interface with Programmed Output for Mux and PGA
- Performs up to 100 Conv/sec
- $\pm 2 p A$ Input Current
- $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Rejection

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX132CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX132CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX132C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{\star}$
MAX132ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX132EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX132MRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Narrow CERDIP ${ }^{* \star}$

* Contact factory for dice specifications.
** Contact factory for availability and processing to MIL-STD-883.

Pin Configuration

ェ18-Bit ADC with Serial Interface

$\pm 660 \mathrm{mV}$ for 60 Hz mode operation or between $\pm 390 \mathrm{mV}$ and $\pm 550 \mathrm{mV}$ for 50 Hz mode operation. The pseudodifferential input voltage is applied across pins 14 and 15 (IN HI, IN LO), and can range to within 2 V of either supply rail.
The inputs INHI and IN LO lead directly to CMOS transistor gates, yielding extremely high input impedances that are useful when converting signals from a high input source impedance, such as a sensor. Input currents are only 2 pA typical at $+25^{\circ} \mathrm{C}$. Figure 6 shows an RC filter at the input to optimize noise performance. Fault protection is accomplished by the $100 \mathrm{k} \Omega$ series resistance. Internal protection diodes, which clamp the analog inputs from V_{+}to V -, allow the channel input pins to swing from ($\mathrm{V}--0.3 \mathrm{~V}$) to ($\mathrm{V}++0.3 \mathrm{~V}$) without damage. However, if the analog input voltage at the pins IN HI or IN LO exceed the supplies, limit the current into the device to less than 1 mA , as excessive current will damage the device.

Reference Voltage Selection

 The reference voltage sets the analog input voltage range. For the nominal $\pm 512 \mathrm{mV}$ full-scale input range, a 545 mV reference voltage is used for the 60 Hz mode and a 655 mV reference voltage is used in the 50 Hz mode. The reference voltage can be calculated as follows:60 Hz Mode: $V_{\text {REF }}=\frac{\left.(545 \text { counts })(512) V_{I N(F S)}\right)}{262,144}$
or
50 Hz Mode: $V_{\text {REF }}=\frac{\left(655 \text { counts) }(512) V_{I N(F S)}\right)}{262,144}$
The recommended reference voltage range is 500 mV to 700 mV . The MAX132 is tested with the nominal 545 mV reference voltage in 60 Hz mode. Use amplifiers or attenuators (resistor dividers) to scale other full-scale input signal ranges to the recommended $\pm 512 \mathrm{mV}$ fullscale range.
References outside the recommended range may be used with a degradation of linearity. A reference voltage from 200 mV to 500 mV will result in a lower signal-to-noise ratio; a reference voltage from 700 mV to 2 V will increase the rollover error.
The MAX872 2.50 V reference, with its $10 \mu \mathrm{~A}$ supply current, is ideally suited for the MAX132. Figure 7 shows how 2.50 V can be divided to obtain the desired reference voltage. The reference input accepts voltages anywhere within the converter's power-supply range; however, for best performance, neither REF+ nor REFshould come within 2 V of the supplies.

Figure 5. Analog Section Block Diagram
shabterstellungn
Dual - segue ADC

$$
\begin{gathered}
M_{a}(t)=-\int_{t_{0}}^{t} \frac{\mu_{R}(t)}{R c} d t+0 \\
t \leq t_{1}
\end{gathered}
$$

2) integrate down, $D E$

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781/329-4700
 www.analog.com
 Fax: 781/326-8703 © 2004 Analog Devices, Inc. All rights reserved.

